
E-Chord: Keyword-Based Search Algorithm Based on DHT in
Mediation Architecture

QASEM KHARMA1 ,RAIMUND EGE2 ,SAID ABU SHAAR3

1,3Al-Ahliyya Amman University
Faculty of Information Technology

Amman, Jordan
1Qasem.Kharma@gmail.com,3said@ammanu.edu.jo

2Northern Illinois University
Department of Computer Science

DeKalb, IL 60115 USA
2ege@cs.niu.edu

Abstract. E-Chord is a Distributed Hash Table algorithm (DHT) inspired from Chord, Pastry and CAN
algorithms. It meant to provide a keyword-based search in the Three-Layer Mediation Architecture. The
E-Chord is deployed in the middle layer (Integration Layer) of the architecture and provides services to
the higher layer (Presence Layer) and the lower layer (Homogenization Layer).

Keywords: DHT, Mediation, Heterogeneous Data Integration

(Received June 25, 2006 / Accepted November 01, 2006)

1 Introduction

In the last few decades, the dependency on accessing
data from distributed data sources has increased because
of the distributed nature of data and breakthroughs in
communication. Existing enterprises were merged. New
international businesses are established. Governmen-
tal organizations need to share information. Advance-
ments in communication, such as wireless, cable, satel-
lite, and fast Internet access make accessing heteroge-
neous data viable. Moreover, the Internet, which is a
network of networks of computers, provides rich data
sources. Therefore, sharing data is essential nowadays.
Unfortunately, in most cases each individual data source
has its own data structures, platform, and design. As a
result, the integration of distributed heterogeneous data
sources is not a simple task. Huge investments were
made in each of those data management systems; hence,
the decision to build a new integrated data management
system or enforce changes is often not a practical solu-
tion.

A mediation architecture [25] was proposed as a so-

lution to integrate heterogeneous data sources in a spe-
cific domain of knowledge by adding a layer between
the application layer and the data sources in the system.
A mediation layer which handles the responsibilities of
accessing the heterogeneous data sources and presents
the integrated data is placed between the data sources
and the application layers; therefore, no changes need
to be done in the layer of the data sources. A client can
query the system by exploring the schema generated by
the mediation system. The data schema of a specific
source is called a local schema; the mediation schema
is called a global schema, and it integrates and trans-
forms several local schemata. Although this solution
is viable and cost-effective, it is not very reliable since
it maintains either a global schema in a central unit or
a specific-domain schema in each mediator. The exis-
tence of such a central unit makes the system vulnerable
to failure.

Our mediation architecture [8, 10] adopts a distri-
bution technique from Peer-to-Peer (P2P) architectures
called Distributed Hash Table (DHT) algorithm in order

Cop
y R

igh
ts 



to avoid having a central failure unit in the system. The
proposed algorithm is a Chord-like algorithm. We will
refer to our enhanced skip-list algorithm as E-Chord
which is deployed in the Integration layer.

2 Background

The background section covers two things: the Three-
Layer Mediation Architecture and DHT algorithms.

2.1 Three-Layer Mediation Architecture

The Three-Layer Mediation architecture [8, 9, 10, 14,
15, 27, 26] which was designed by the Secure System
Architecture (SSA) laboratory at Florida International
University (FIU) was a group research project directed
by Dr. Ege. Members. The architecture is to define
and build a multi-layered mediator-based multimedia
architecture that provides a dynamic, scalable frame-
work for telecommunications software environments.
It is capable of handling complex data types and pro-
viding services to various devices including mobile de-
vices. The architecture (see Figure 1) is based on three
layers: a “presence” layer takes requests from clients
and is responsible for caching and buffering of streams
that it receives from the “integration” and “homoge-
nization” layers. The second layer is the “integration”
layer which is responsible for decomposing requests,
searching for the sources, integration. The “integration”
layer is composed of a set of mediators called “com-
posers”. For each new session created by a “presence”
mediator, a composer is elected to be a “global medi-
ator” which is responsible for communication with the
presence mediator and managing the request process-
ing. The third layer is the “homogenization” where a
connection to actual data sources is established. The
“homogenization” layer is composed of a set of connec-
tors. On top of each data source, a connector is placed
to manage the access to the data source. The common
data model in the architecture is based on XML. XML
is a semi-structured model that is capable of handling
structured and unstructured data. XML request and its
decomposition is done at the “integration” layer which
consists of mediators that successively decompose an
XML request into smaller XML requests that are closer
to the data sources that are served-up by the “homoge-
nization” layer.

2.2 DHT algorithms

In the decentralized P2P systems where there is no cen-
tralized unit and all nodes (peers) have the same com-
putation power, many problems arise such as security,
scalability, administration, and more. Locating data files

in the distributed P2P environment is essential since
many systems are naturally distributed. The most dif-
ficult challenge in P2P is how data can be found in a
large, scalable P2P system without relying on a central
server [1]. If this server fails, the system will fail. To
avoid having a central failure scenario, many algorithms
based on DHT were proposed in the past few years. In-
stead of having a central server, those DHT algorithms
use a DHT in which each node maintains some knowl-
edge about some other nodes (but not all). The general
purpose of these algorithms is to map a value onto a
key using a hash function. Although the general for-
mat of the value is a node IP address, the value can be
any meaningful value for the system to be built such as
document name.

Balakrishnan et al. [1] classifies DHT algorithms
into three categories:

1. Skiplist-like routing algorithm: The Chord algo-
rithm [23, 24] is an example of skiplist-like rout-
ing algorithm. In Chord, the hash function assigns
a m-bit (where m is the number of the bits used
for storing the key in binary) identification key us-
ing Secure Hash Algorithm (SHA-1)[17] as a base
function to map an IP address onto a key. The
nodes in the system are arranged in an identifier
circle. Each node on this circle maintains a finger
table containing the IP addresses of n + 2i−1 suc-
cessors where n is the node ID and 1 ≤ i ≤ m.
In other words, this finger table maintains the IP
addresses of halfway, quarter-of-the-way, eighth-
of-the-way, and so forth.

2. Routing in multiple dimensions: The scalable Con-
tent Addressable Network (CAN) [18, 19] is an
example of routing in multiple dimensions. Each
node in CAN maintains a chunk of the DHT called
zone. These zones are distributed in d-dimensions.
In addition to storing a chunk of the DHT in the
zone, each zone maintains information about its
neighbors in the d-dimensions.

3. Tree-like algorithms: Tree-like algorithms, such as
Pastry [5, 21], Tapestry [13], and Kademlia [16],
use a structured prefix to maintain the location of
nodes. Each node maintains IP addresses of some
other nodes in its leaf. For instance, Kademlia al-
gorithm assigns 160-bit IDs to the nodes in the P2P
system and treats those nodes as leaves in a binary
tree.

Cop
y R

igh
ts 



Figure 1: The Three-Layer Mediation Architecture

3 Overview of Searching in the Three-Layer
Mediation Architecture

The design goal of our mediation architecture is to avoid
having any component that constitutes a central point
of failure. Unlike MIX [2, 3] and Garlic [4, 20], our
system does not maintain a global schema, which is a
global view of the integrated data sources in the sys-
tem, in a central repository. Although TSIMMIS [6, 12]
uses a distribution strategy for its schema over specific
domain chain of mediators, each mediator maintains its
own global schema. [8, 10] adopts a distribution tech-
nique from Peer-to-Peer (P2P) architectures called Dis-
tributed Hash Table (DHT) algorithm using Enhanced
Chord-like (E-Chord).

Although the mediator-composers are connected in
a P2P fashion, the mediation system has different char-
acteristics from the standard P2P systems. First, media-
tion systems are usually domain specific systems. They
are deployed in a specific knowledge domain to provide
decision-makers with information in that domain which
may be integrated from several sub-domains. Each sub-
domain may be composed of several heterogeneous data
sources. Some keywords, which are key search criteria,
may be repeated. For instance, if the system is deployed
in a medical domain, the system might be composed

of data sources that contain medical records, and insur-
ance information. In this scenario keywords, such as
patient, name, and SSN, will be frequently repeated in
queries. Second, the mediator-composers are more sta-
ble than standard peers in a P2P system. P2P systems
were originally intended for music files sharing over the
Internet. They created networks in which peers join and
leave arbitrarily. Mediator-composers are more stable
since they could be run by either the data source admin-
istrators or service providers.

The key operation in DHT algorithm is the “lookup”.
DHT algorithms are structured in the sense that each
node in the system is responsible for a range. Before
any action can be taken, the node which is maintaining
the range of the desired action must be found. For in-
stance, when a new node wants to join the system, its
successor must first be looked up. Then, the new node
can join the system.

The E-Chord algorithm is a relaxed version of the
Chord algorithm. It combines features from Chord [23,
24], CAN [18, 19], and Pastry [5, 21]. The general
structure is based on the Chord structure. Like Pastry,
the adapted algorithm updates its routing information
when a node is discovered not to be available. A fre-
quency list is added to each node instead of a neigh-

Cop
y R

igh
ts 



borhood set. Finally, like CAN, the data sources are
responsible for their pointers.

4 Routing Information

Like DHTs, the E-Chord algorithm uses the Secure Hash
Algorithm (SHA-1) as a hash function. The SHA-1
generates nodes’ identifiers and keywords’ identifiers.
The node identifiers are generated by running the SHA-
1 on a composition of the IP address and the port num-
ber of each node while the keyword identifiers are gen-
erated by running SHA-1 on the keyword to be indexed
in the system. The keywords’ identifiers are distributed
over the first successor of each keyword. As a result
of using SHA-1, the generated identifiers have 160 bits,
and the input is limited to 264 bits.

The E-Chord algorithm maintains three sets of rout-
ing information in each node. The first set, like Chord,
is the finger table which contains 160 entries. The en-
tries are points to halfway, quarter-of-the-way, eighth-
of-the-way, and so forth. The entries in the finger ta-
ble can be found by first calculating the estimated value
from the formula for 1 ≤ i ≤ 160 estimated_value =
(current_node_identifier+2i−1) mod 2160 and then
finding the first actually successor of the estimated value.
The second set, like Pastry’s leaf set, maintains the im-
mediate successors and predecessors. The third set main-
tains entries of the most frequent used keywords. The
connector on the top of the data source maintains coun-
ters of the number of times it was queried for its key-
words. When it sends the schema to the composer, the
frequency of each keyword in the schema is sent along
with the schema. Although the connector is responsible
for counting the frequency, the entries in the frequency
set points to the composer which is responsible for the
range of the keyword, not to the connectors. The com-
poser checks the frequencies assigned to the schema
with the ones stored in its set and adds any keywords
that have higher frequencies than the existing frequen-
cies in its set.

When a global mediator receives a request from a
presence mediator, it adds to each element in the re-
quest an identifier attribute which contains the hashed
value of the keyword. Then, the elements are sorted in
the request according to the identifiers. After that, the
composer, either the global mediator or a cooperating
composer mediator, searches its sets for each keyword
in the following order:

1. The composer checks first if the keyword is within
its range. If the keyword is within its range, it adds
the connector_id to the request and returns it to the
global mediator.

2. The most frequently used keywords set: the com-
poser checks the set for an exact match. If an exact
match is found, the composer forwards the request
to the composer responsible for the range of that
keyword.

3. The composer checks the set of the immediate suc-
cessors and predecessors. If the keyword is within
the range of the largest node identifier in the suc-
cessor list and the composer identifier, it means
that the keyword must be maintained by one of the
successors. In a similar approach, the composer
checks whether the keyword is within the range
of its predecessor list. If the keyword is within
the successor/predecessor list, the composer for-
wards the request to the composer that maintains
the range of the keyword.

4. Finally, if non of the previous steps finds the com-
poser that maintains the requested range, the com-
poser forwards the request to the first node with an
identifier that immediately precedes the keyword’s
identifier in the finger table.

Before the global mediator looks up the next keyword,
it checks whether the next keyword identifier is within
the range of the composer maintaining the previous key-
word. The global mediator groups the set of the key-
words within the same range and forwards them in one
request to the composer. The composer adds the con-
nector_ids to the request and returns it to the global me-
diator.

The E-Chord is a relaxed version of Chord; it has
a similar structure to the Chord algorithm. It is a skip-
list like algorithm. The finger table and the frequency
set help the composer to skip as many as possible com-
posers that cannot help in solving the request. The suc-
cessor and predecessor set compose the logical ring of
the system; therefore, the system has a ring geome-
try. Since the system is using the SHA-1 algorithm, the
composers in the system are distributed over the logical
ring from range 0 to 2160 − 1.

The size of the finger table is fixed while the other
two sets are runtime parameters. The size of the fin-
ger tables is fixed to 160 entries in each node because
it is related to the identifier size. The SHA-1 generates
identifiers of length 160 bits, so the maximum number
of entries that can be maintained in the finger table is
160. The size of the successor and predecessor set and
the frequency set are determined by the system adminis-
trator. The size of successor and predecessor set should
be a reasonable size according to the expected number
of the composers in the system. In the Chord algorithm
the successor list is recommended to be of size 2log2n

Cop
y R

igh
ts 



where n is the expected number of the nodes in the sys-
tem. The size of the frequency set should be reasonable
according to the expected number of the keywords in
the system.

5 Joining the System

There are two cases that affect the DHT in the integra-
tion layer. The first case is when a new composer joins
the system. The second case is when a new connector
joins the system. The former case affects the system by
adding a new composer to the P2P system; as a con-
sequence, this new composer will play a role in rout-
ing and maintaining routing information while the later
case, adding a new connector, adds new indexes to the
DHT tables. The connectors in the system do not play
any role in routing requests.

When a new composer wants to join the system, it
must first find another composer which is already in the
P2P system. There are many bootstrapping techniques
[11] such as simple broadcast, selective broadcast, and
adaptive broadcast. In the simple broadcast, the new
peer sends a message to every peer in the system. This
technique overloads the system with messages; as a re-
sult, it consumes the bandwidth of the system. Un-
like simple broadcast, in the selective broadcast the new
peer sends a message to selective peers in the system
based on predefined criteria such as trust relationship in
the selective broadcast technique. Adaptive broadcast-
ing is similar to the selective one in the sense that both
of them try to minimize the consumption of the net-
work resources. However, adaptive broadcasting needs
to keep monitoring the system for changes. The CAN
algorithm [18, 19] uses a selective techniques in which
a list of nodes are maintained in a registered domain.
When a new node wants to join the system, it retrieves
the list and sends a message to a node in the list. In our
system, we opt to enter an existing node IP address as a
parameter when creating a new composer.

Once the new node finds a composer in the system,
it sends a “join” message to that node. The node treats
the “join” message as a “lookup”. It searches for the
node responsible for the range of the new node in a sim-
ilar fashion to finding a keyword (See Section 4). Un-
like searching for keyword, the process will terminate
once the composer maintaining the range of the new
composer is found, not the connector. After finding the
composer, the new composer will be the immediate pre-
decessor of that node.

The next step is to initialize the lists. The most im-
portant list for the system is the successor/predecessor
list. The importance of this list is to keep the system’s
logical ring connected all the time; so that, the rout-

for i←1 to m do
finger[i].start← node_identifier+2i−1 mod 2160

if finger[i].start > finger[i].node
finger[i].node=find_successor(finger[i].start)

%else no action is needed

Figure 2: Pseudocode for initializing the finger table

ing to the destination can be guaranteed. Once the new
node finds its position in the ring, it obtains the succes-
sor/predecessor list from the composer which is respon-
sible for the range of the new node. The new composer
will have exactly the same predecessor list as the old
one. The successor list is almost the same except that
the first successor is the old composer. The new com-
poser informs the composer in the successor/predecessor
list of its arrival. If the size of successor/predecessor
list is 2r where r is a parameter defined by the sys-
tem administrator, the new node will sends r messages
to its successors to update their predecessor lists and
r messages to its predecessors to update their succes-
sor lists. The nodes in the successor/predecessor list
send their frequency list, so the new node can construct
its frequency list from those lists. Finally the finger
table is initialized from the finger table of the prede-
cessor. Unlike Chord, our algorithm does not lookup
all the entries in the new finger table. The new com-
poser obtains a copy of the finger table of its prede-
cessor. Then, the new composer checks whether the
ranges of the entries are within the current pointer val-
ues. The pseudo code for initializing the finger table is
listed in Figure 2. The new composer notifies the nodes
which are expected to point to it in their finger table us-
ing Chord’s “update_others” method [23]. The idea of
the “update_others” is to find the nodes that precede the
new composer by 2i−1. That can be done by finding the
predecessor of n− 2i−1, and then update the i entry in
that node to point to the new composer if the “i” entry
must point to the new composer.

When a new connector joins the system, it will find
an existing composer in the ring of the system. An ex-
isting composer can be found using the bootstrap tech-
niques explained earlier in this section. Unlike adding
a new composer, adding a new connector will not affect
the routing information, but it adds new indexes to the
system. Once the connector finds a composer, it sends
its XML document. The composer called distributor
generates identifiers for the keywords in the XML doc-
ument. Then, it sorts the keywords according to their
identifiers. After that, the distributor finds the composer
which is responsible for the range of the keyword. This

Cop
y R

igh
ts 



process is similar to finding a keyword, but instead of
returning a connector it adds the keyword. The com-
poser which will index the keyword returns its range
for the distributor. The distributor groups the keywords
with the composer range and sends them in one mes-
sage. The distributor repeats this process until all the
keywords are distributed.

Unlike CFS [7] which is a file storage for blocks
based on Chord and PAST [22] which is a file stor-
age for files based on Pastry, the mediator does not dis-
tribute the data in the data sources among the composer-
mediator. The mediator system needs only to distribute
pointers to the connectors on top of data sources which
will be accessed through connectors. In other words,
the composers only cache the identifiers and the con-
nectors’ IP addresses and socket numbers, and the data
can be accessed and retrieved directly from the source
through the connector.

6 Replication and System Recovery

The system has a self-recovery mechanism when a com-
poser fails. In order to preserve the indexing from being
lost, the system maintains a replication of each com-
poser’s indexes in its successors which are in its suc-
cessor list. Therefore, the system administrator needs
to consider a reasonable size for the successor list. As-
sume that the system administrator chooses size l for
the successor list, then the probability that all the suc-
cessors fail is 1/2l since the probability of a successor
failing is independent from the others. Not only does
composer failure affect the keyword indexing, but also
it affects the routing in the system. Each node in the
DHT algorithm maintains information about a set of
other nodes in the system. When a node in that set fails,
the other nodes assist in routing and recovering the set.

In most cases, when a composer leaves the system,
it will not notify the others. As a consequence, the
routing information maintained in the finger table, suc-
cessor/predecessor list, and frequency list may not be
valid. However, the system is not aggressive in main-
taining all the pointers valid. The system will only keep
the successor list having valid pointers by sending mes-
sages periodically to its immediate successor to check
its availability. If the immediate successor does not re-
spond, the composer will contact the next successor in
the list. Then, the successor list will be updated by re-
ceiving the successor list from the first composer that
responds to the message.

If an entry in the frequency list was found not to
be valid, the composer removes this entry from the list.
The frequency list is meant to help the composer to find
a short-cut to the destination composer based on histori-

cal requests. However, since for each request the global
mediator is elected, the path from the global mediator
to the connector is built dynamically. The connectors
in the system maintain counters of the frequencies of
each keyword in its source. The frequency counters are
returned with the schema to the composer, so the com-
poser will maintain the most frequently used keywords
from its frequency list and the received schema. The
frequency list is built dynamically and may differ from
a composer to another.

The last case is an invalid entry in a finger table. The
system will lookup the successor of the start interval of
the failed entry. The start of the interval is calculated by
the equation:
finger[i].start = (composer_identifier+2i−1) mod
2160. Then, the node looks up this value by invoking
“lookup(finger[i].start)”. The “lookup” method returns
the identifier of the node which maintains the range of
the requested interval.

The system needs to have at least one valid pointer
in each composer. If all the pointers in the finger table
fail, the composer can forward the request to its succes-
sor using the successor list. Even if the request is not
within the successor range, eventually the destination
will be reached. If all the finger tables in the system
fail, the lookup can be done in O(n) messages by for-
warding the messages from a composer to its successor.
However, having the finger table can reduce the number
of messages to O(log2 n) by skipping half the distance
closer to the destination each time.

7 E-Chord Simulation

A Java based simulation of E-Chord was developed.
The simulation creates logical nodes instead of physi-
cal nodes. The logical node simulation is a simulation
in which the system runs on a single machine instead
of set of computers. Logical node’s information can be
either randomly generated or loaded from a file. The
generated or loaded information simulates the physical
nodes’ IP address and port numbers. Figure 3 shows the
menu of the simulation. The user can either choose to
load nodes from a text file or to generate IP address and
ports randomly. The maximum number of nodes that
can be loaded depends on the simulation machine con-
figuration (hard disk capacity, memory, softwareĚ). The
simulation was run on a machine with 2.0 GB memory.
10,000 nodes were randomly generated (Figure 4). In-
creasing the number or running applications in addition
to the simulation on the same machine may give a run-
ning error because of the memory limitation.

After loading the nodes’ information the “join” op-
tion, which is choice number 2 in the menu, must be

Cop
y R

igh
ts 



Figure 3: The main menu of the simulation

Figure 4: Random generation of nodes

Figure 5: Adding keywords to the system

Cop
y R

igh
ts 



chosen to fix the finger tables. E-Chord after running
the “join” option is in a stable state that all the lists
maintain valid information. By adding a new logical
node, which is option 8 in the menu, the system state
will change to unstable state which will eventually be
fixed by serving request.

Keywords can be added to the system by choosing
option 3 from the menu which will load and convert a
data source into an XML structure. This option cur-
rently supports only MS ACCESS data sources; how-
ever, this will not affect the fact that the system is capa-
ble of handling heterogeneous data source since the in-
put to the E-Chord is always XML structures. Loading
keywords option uses JDOM library (www.jdom.org)
to generate XML tree from the data source. Figure 5
shows some keywords added to the system. It illustrates
the key value to be added, its connector information,
the identifier of the key, the identifier of the composer
maintaining the range, and the composer information.

8 Summary

We introduce in this research an enhanced skip-list al-
gorithm which is based on DHT to cache the key-
words in the mediation architecture. The algorithm is
a relaxed-version of Chord algorithm called E-Chord
which uses features from CAN and Pastry algorithms.
A frequency list and successor / predecessor list are
added to each node (composer) to enhance the routing
information. Unlike the Chord algorithm which main-
tains only successor list, the proposed algorithm main-
tains successor/predecessor list. Moreover, each node
maintains a frequency list which is composed of a list of
most queried keywords. A new initializing finger table
method was designed to minimize the number of mes-
sage in construction the finger table of a newly joined
node. Using E-Chord in mediation is effective when
data sources are disjoined.

Although the new algorithm needs less message in
maintaining the system and routing, it needs O(log2n)
messages to find each keyword. If a composer wants to
look up a keyword which does not exist within its range
or the frequency list, the composer uses the finger table
to route the request. Therefore, it jumps half the dis-
tance closer to the target, like Chord. Unlike Chord, the
enhanced algorithm uses relaxed repairing mechanism
for the finger table entries instead of periodical checks.
Our algorithm is not aggressive in maintaining the fin-
ger table. An action is taken if an entry in finger table
is found to be invalid.

The most expensive operation from the time com-
plexity viewpoint is the sorting. The global mediator
performs sorting twice: keyword identifiers sorting and

connector_id sorting. It takes O(e log2 e) to sort “e”
elements in the XML document using merge sort or bi-
nary sorting algorithm. The selection algorithm is not
as expensive as the sorting. The selection can be done in
O(l) where “l” is the size of the lists in the composer.

References

[1] Balakrishnan, H., Kaashoek, M. F., Karger, D.,
Morris, R., and Stoica, I. Looking up data in P2P
systems. Communications of the ACM, 46(2), Feb.
2003.

[2] Baru, C., Chu, V., Gupta, A., Ludäscher, B., Mar-
ciano, R., Papakonstantinou, Y., and Velikhov, P.
XML-based information mediation for digital li-
braries. In DL ’99: Proceedings of the fourth ACM
conference on Digital libraries, pages 214–215,
Berkeley, California, Aug. 1999. ACM Press.

[3] Baru, C., Gupta, A., Ludäscher, B., Marciano, R.,
Papakonstantinou, Y., Velikhov, P., and Chu, V.
XML-based information mediation with mix. In
SIGMOD ’99: Proceedings of the 1999 ACM SIG-
MOD international conference on Management
of data, pages 597–599, New York, 1999. ACM
Press.

[4] Carey, M. J., Haas, L. M., Schwarz, P. M.,
Arya, M., Cody, W. F., Fagin, R., Flickner, M.,
Luniewski, A. W., Niblack, W., Petkovic, D.,
Thomas, J., Williams, J. H., and Wimmers, E. L.
Towards heterogeneous multimedia information
systems: the Garlic approach. In RIDE-DOM
’95 :5th Int’l Workshop on Research Issues in
Data Engineering: Distributed Object Manage-
ment, pages 124–131, 1995.

[5] Castro, M., Druschel, P., Hu, Y. C., and Rowstron,
A. Topology-aware routing in structured peer-to-
peer overlay network. Technical Report MSR-TR-
2002-82, Microsoft Research, 2002.

[6] Chawathe, S. S., Garcia-Molina, H., Hammer, J.,
Ireland, K., Papakonstantinou, Y., Ullman, J. D.,
and Widom, J. The TSIMMIS project: Integration
of heterogeneous information sources. In 16th
Meeting of the Information Processing Society of
Japan, pages 7–18, 1994.

[7] Dabek, F., Kaashoek, M. F., Karger, D., Morris,
R., and Stoica, I. Wide-area cooperative stor-
age with cfs. In SOSP ’01: Proc. of the 18th
ACM Symposium on Operating Systems Princi-
ples, Chateau Lake Louise, Alberta, Canada, Oct.
2001.

Cop
y R

igh
ts 



[8] Ege, R. K., Yang, L., Kharma, Q., and Ni, X.
Three-layered mediator architecture based on dht.
In ISPAN: 7th International Symposium on Par-
allel Architectures, Algorithms, and Networks,
pages 313–318, Hong Kong, May 2004.

[9] Ezenwoye, O., Ege, R. K., Kharma, Q., and Sid-
dique, S. Electing a global mediator in a three-
layer mediator. In IEEE SoutheastCon 2005 Con-
ference, Ft. Lauderdale, Florida, Apr. 2005.

[10] Ezenwoye, O., Ege, R. K., Yang, L., and Kharma,
Q. A mediation framework for multimedia de-
livery. In MUM2004: Third International Con-
ference on Mobile and Ubiquitous Multimedia,
Maryland, Oct. 2004.

[11] Flenner, R., Abbott, M., Boubez, T., Cohen, F.,
Krishnan, N., Moffet, A., Ramamurti, R., Sid-
diqui, B., and Sommers, F. Java P2P Unleashed.
Sams, first edition, 2002.

[12] Garcia-Molina, H., Quass, D., Papakonstantinou,
Y., Rajaraman, A., Sagiv, Y., Ullman, J. D., and
Widom, J. The TSIMMIS approach to mediation:
Data models and languages. Journal of Intelligent
Information Systems, 8(2):117–132, 1997.

[13] Hildrum, K., Kubiatowicz, J., Rao, S., and Zhao,
B. Distributed object location in a dynamic net-
work. In Proc. of 14th ACM Symp. on Parallel
Algorithms and Architectures (SPAA), Aug. 2002.

[14] Kharma, Q., Ege, R. K., Ezenwoye, O., and Yang,
L. Data integration in a three-layer mediation
framework. In IEEE SoutheastCon 2005 Confer-
ence, Ft. Lauderdale, Florida, Apr. 2005.

[15] Kharma, Q. and K.Ege, R. The impact of us-
ing DHT in 3-layered mediator framework. In
ICTIT: International Conference on Telecomput-
ing and Information Technology, Amman, Jordan,
Sept. 2004.

[16] Maymounkov, P. and Mazieres, D. Kademlia:
A peer-to-peer information system based on the
XOR metric. In Proc. of the 1st International
Workshop on Peer-to-Peer Systems, Cambridge,
MA, Mar. 2002. Springer-Verlag version.

[17] of Commerce, U. D. Secure hash standard. Tech-
nical Report FIPS 180-1, NIST National Techni-
cal Information Service, Apr. 1995.

[18] Ratnasamy, S. A Scalable Content-Addressable
Network. PhD thesis, University Of California at
Berkeley, 2002.

[19] Ratnasamy, S., Francis, P., Handley, M., Karp, R.,
and Shenker, S. A scalable content-addressable
network. In Proc. of ACM SIGCOMM, San Diego,
CA, Aug. 2001.

[20] Roth, M. T., Arya, M., Haas, L., Carey, M., Cody,
W., Fagin, R., Schwarz, P., Thomas, J., and Wim-
mers, E. The Garlic project. In SIGMOD ’96:
Proceedings of the 1996 ACM SIGMOD interna-
tional conference on Management of data, page
557. ACM Press, 1996.

[21] Rowstron, A. and Druschel, P. Pastry: Scal-
able, distributed object location and routing for
large-scale peer-to-peer systems. In Proc. of the
18th IFIP/ACM Int’l Conf. on Distributed Systems
Platforms, Heidelberg, Germany, Nov. 2001.

[22] Rowstron, A. and Druschel, P. Storage manage-
ment and caching in past, a large-scale, persistent
peer-to-peer storage utility. In SOSP ’01: Proc.
of the 18th ACM Symposium on Operating Sys-
tems Principles, Chateau Lake Louise, Alberta,
Canada, Oct. 2001.

[23] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F.,
and Balakrishnan, H. Chord: A scalable peer-to-
peer lookup service for internet applications. In
Proc. of ACM SIGCOMM, San Diego, Aug. 2001.

[24] Stoica, I., Morris, R., Liben-Nowell, D., Karger,
D. R., Kaashoek, M. F., Dabek, F., and Balakrish-
nan, H. Chord: A scalable peer-to-peer lookup
protocol for internet applications. IEEE/ACM
Transactions on Networking, 11(1):17–32, Feb.
2003.

[25] Wiederhold, G. Mediators in the architecture of
future information systems. Computer, 25(3):38–
49, 1992.

[26] Yang, L. and Ege, R. K. Dynamic integration
strategy for mediation framework. In SEKE: Soft-
ware Engineering and Knowledge Engineering,
Taipei, Taiwan, Republic of China, 2005.

[27] Yang, L., Ege, R. K., Ezenwoye, O., and Kharma,
Q. A role-based access control model for in-
formation mediation. In IRI: Proceedings of the
2004 IEEE International Conference on Informa-
tion Reuse and Integration, pages 277–282, Las
Vegas, NV, Nov. 2004.

Cop
y R

igh
ts 


	Introduction
	Background
	Three-Layer Mediation Architecture
	DHT algorithms

	Overview of Searching in the Three-Layer Mediation Architecture
	Routing Information
	Joining the System
	Replication and System Recovery
	E-Chord Simulation
	Summary



